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Abstract In spite of the recent progress in fractional programming, the sum-of-ratios
problem remains untoward. Freund and Jarre proved that this is an NP-complete problem.
Most methods overcome the difficulty using the deterministic type of algorithms, particu-
larly, the branch-and-bound method. In this paper, we propose a new approach by applying
the stochastic search algorithm introduced by Birbil, Fang and Sheu to a transformed image
space. The algorithm then computes and moves sample particles in the q − 1 dimensional
image space according to randomly controlled interacting electromagnetic forces. Numeri-
cal experiments on problems up to sum of eight linear ratios with a thousand variables are
reported. The results also show that solving the sum-of-ratios problem in the image space as
proposed is, in general, preferable to solving it directly in the primal domain.

Keywords Sum-of-ratios problems · Min-max problems · Dinkelbach-type method ·
Branch-and-bound method · Stochastic search method

1 Introduction

Consider the sum-of-ratios problem of the following form:

(P) min
x∈D

q∑

s=1

fs(x)

gs(x)
,

where fs : R
n → R and gs : R

n → R are continuous on D and gs(x) > 0, ∀x ∈ D, s =
1, 2, . . . , q. We assume that D ⊂ R

n is compact and connected. Problem (P) arises in many
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Table 1 Recent numerical results on the sum-of-ratios problems

Reference q n Ratio type Approach

[7] 2 2 Linear Concave minimization (image sp.)

[16] 8 10 Linear B&B (image sp.)

[18] 12 40 Linear B&B (image sp.)

[21] 7 10 Linear Monotonic optimization (image sp.)

[5] 2 2 Nonlinear B&B (image sp.)

[6] 3 4 Nonlinear B&B (domain sp.)

[12] 1 50 Nonlinear Interior point method (image sp.)

different contexts. For example, Almogy and Levin [1] analyzed a multistage stochastic
shipping problem, whose model has a deterministic equivalence to (P). Konno and Inori [17]
formulated a bond portfolio optimization problem in the form of (P). Other applications can
be found in Frenk and Schaible [11].

When q = 1, (P) is a single-ratio problem. In this case, if f1 is nonnegative convex and g1

positive concave, then f1/g1 is strictly quasi-convex with a unique optimum (see Schaible
[2,3]). When q ≥ 2, even for the simplest case in which fs , gs are affine functions, problem
(P) is a global optimization problem that may have multiple local optima [23]. In particular,
Freund and Jarre [12] proved that (P) is NP-complete, indicating that an efficient algorithm
may not exist. So far, most studies have focused on the linear ratios (see [7,15–18]), although
there are a few studies on the nonlinear ratios (see [4–6,12]). Table 1 above lists the recent
literature and the largest problem solved therein.

As we can see from the table, the branch-and-bound approach is the most popular. It
divides either the image space of fs and/or gs , or divides the domain of (P) into several parts,
while solving linear(nonlinear) programs to obtain the bounds. Because of the combinatorial
nature of the branch-and-bound approach, the computational complexity grows exponentially
as the dimension of the problem becomes larger. Therefore, it is quite difficult to handle a
high dimensional feasible region or go beyond the sum of 10 linear ratios.

In contrast to deterministic algorithms, we propose to use a method equipped with a random
mechanism. The term “randomness” does not mean to find the global optimum totally by
chance. Indeed, most probabilistic algorithms adopt deterministic policies to direct the local
search, whereas repeatedly random sampling is used only to escape non-global local optima.
Commonly used stochastic algorithms include simulated annealing [14], evolutionary meth-
ods [20], multilevel methods [22], and partitioning methods [24]. Most methods are not just
heuristics but have a proof for convergence in probability.

In this paper, we are particularly interested in the performance of Birbil, Fang and Sheu’s
stochastic algorithm [9] for solving (P). The feature is to mimic the basic electromagnetism
theory of physics to produce some sort of interacting forces among a population of charged
particles. For this reason, it is called the Electromagnetism-like mechanism (EM in short).
Basically, the EM method draws a finite population of sample particles and move them within
a given working space. The particles iterate only according to their objective function values,
but not relating to any linearity, convexity, or differentiability of fs, gs . Naturally, the work-
ing space for EM can be just D itself, or some specially designed image space of fs, gs . In
view that a typical large scale problem always has a large n whereas q is in general less than
50, we shall try to work the EM method in the image space and call it the EM image space
approach.

123



J Glob Optim (2008) 42:91–109 93

To this end, we propose to replace fs/gs with an independent variable γs for all but the first
ratio f1/g1. In other words, we set γs = fs/gs for s = 2, 3, . . . , q and determine the range
of each γs by solving single ratio problems. Then, the EM method is applied to the (q − 1)−
dimensional space of γ2, γ3, . . . , γq . When a point is sampled, its associate function value
can be computed by minimizing the remaining ratio f1(x)/g1(x). In this way, we decom-
pose (P) into a series of single ratio problems each of which is solved by the Dinkelbach
algorithm. The motivation for doing this lies in the fact that the Dinkelbach procedure for
solving a single ratio problem is exactly the Newton method [13]. The theoretical derivation
of the EM image space approach constitutes the first part of the paper.

Numerically, although the convergence of EM is asymptotic, against the well-known
nonlinear optimization solver KNITRO equipped with the multistar feature, our examples
demonstrate that, for large scale sum-of-linear-ratios problems with n � q , the EM image
space approach outperforms KNITRO with multistar. Finally, our numerical examples sug-
gest that the EM image space approach is, in general, preferable to applying EM directly on
D (the EM domain space approach). The numerical results constitute the second part of the
paper.

2 EM review

In this section, we summarize important results of EM (for details, see [9]). The method
looks for the global optimal solutions of a generic nonlinear function over a box constraint.
Specifically, it takes the following form:

min f (x)

s.t. x ∈ S,

where f : Rn −→ R is a nonlinear function and

S = {x ∈ Rn | −∞ < lk ≤ xk ≤ uk < ∞, k = 1, . . . , n}
is a hyper-cube(rectangular) in Rn .

Suppose we select m sample particles {1, 2, . . . ,m} whose positions in S are x1, . . . , xm ,
respectively. Let best be an integer in {1, 2, . . . ,m} that marks the particle with the smallest
object value and its position with xbest .

To mimic the electromagnetism theory, imagine that the particle i is charged by an amount
Qi as follows:

Qi = exp

(
−n

f (xi )− f (xbest )∑n
i=1 f (xi )− f (xbest )

)
. (1)

In this way, each Qi is normalized to have a value in (0, 1] and higher charges always imply
smaller f -values. Given a pair of charged particles i and j and assuming that f (xi ) < f (x j ),
we denote the interacting force F (i, j) as

F (i, j) = (
xi − x j ) Qi Q j

‖xi − x j‖2 (2)

and define

F ( j,i) = −F (i, j).
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In other words, F (i, j) always points from a particle having a relatively higher objective value
to the other. The magnitude of F (i, j) is proportional to the product of their charges, and also
inversely proportional to the square of the distance. The total force Fi exerted on particle i
can then be computed by adding all component forces vectorially:

Fi =
m∑

j 
=i

τ j F (i, j), (3)

where τ j = 1 if f (xi ) < f (x j ), and τ j = −1 if f (xi ) ≥ f (x j ). But there are two exceptions
in the algorithm. First, at each iteration, the particle best never moves. That is, Fbest = 0.
Secondly, the farthest particle away from best , say particle p, has a positive probability to
reverse component force. Specifically, choose any

x p ∈ arg max{‖xbest − xi‖, i = 1, 2, . . . ,m}.
Then,

F p =
m∑

j 
=p

(−1)n j τ j F (i, j) (4)

where n j , j = 1, . . . , p̂, . . . ,m, is a Bernoulli random variable with a success probability
µ ∈ (0, 1) such that

n j =
{

0, with probability 0 < µ < 1;
1, with probability 1 − µ.

Using Fi as the moving direction, the particle i moves to its new location

xi = xi + λi
Fi

‖Fi‖ , (5)

where λi is a random step size to keep xi in the box. After arriving at the new positions, the
objective values and the associated charges of all particles are re-evaluated. Then, the process
starts afresh. If we define Yk to be the m positions at iteration k, then Yk is a random variable
whose state space is Sm = S × S . . . × S. Consequently, the family of random variables
{Yk : k = 0, 1, 2 . . .} constitutes a stochastic process. Since the location of the particles at the
next iteration relies only on their current positions, it is a time homogeneous Markov chain.

Birbil et al. [9] showed that, under mild assumptions, EM converges to global optimum
with probability one. Let x∗ be a global minimum solution of min{ f (x) : x ∈ S}. Given
ε > 0, define the ε-neighborhood of x∗ by

B∗
ε = {x ∈ S | | f (x)− f (x∗) |≤ ε}.

Also, define χB∗
ε
(x) as the characteristic function

χB∗
ε
(x) =

m∑

i=1

1B∗
ε
(xi ).

They have the following assumptions:

1. µ(B∗
ε ) > 0, where µ is the Lebesgue measure on Rn .

2. f : S −→ R is a lower bounded measurable function with respect to the Lebesgue
measure µ.
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3. The collection of m (m > n) vectors generated by the algorithm at every iteration has a
full affine rank, i.e.,

rank({x1, x2, . . . , xm}) = n.

Theorem 2.1 Under the above assumptions, EM converges with probability one, i.e.,

limk−→∞ P{χB∗
ε
(Yk) 
= 0} = 1.

3 Theoretical results

In this section, we address the EM image space approach for solving (P). Our idea is to fix
q −1 ratios at a parametric vector γ ∈ Rq−1 and to solve the remaining single-ratio problem
with a set of q − 1 constraints.

Let the image space of the last q − 1 ratios be

Iq−1 =
{(

f2(x)

g2(x)
, . . . ,

fq(x)

gq(x)

) ∣∣∣∣ x ∈ D

}

and

γ = (γ2, . . . , γq) ∈ Iq−1.

Define

(Pγ ) min
x∈D

f1(x)

g1(x)
+ γ2 + · · · + γq

s.t.
fs(x)

gs(x)
= γs, ∀s = 2, . . . , q. (6)

Equivalently, (Pγ ) can be written as

T (γ ) = min
x∈Dγ

f1(x)

g1(x)
+ γ2 + · · · + γq

s.t. Dγ = {x ∈ D| fs(x)− γs gs(x) = 0, ∀s = 2, . . . , q}. (7)

This is a single ratio problem with q − 1 constrains. The following theorem asserts that
problem (P) can be solved by minimizing T (γ ) over Iq−1, i.e.,

(P′) inf T (γ )

s.t. γ ∈ Iq−1. (8)

Theorem 3.1 The optimal values of (P) and (P′) are the same.

Proof Let x∗ and M be the optimal solution and the optimal value of (P), respectively.
Likewise, let M1 be the optimal value of (P′). Since

(
f2(x∗)
g2(x∗)

, . . . ,
fq(x∗)
gq(x∗)

)
= γ ∗ ∈ Iq−1,
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we have,

M1 ≤ T (γ ∗)

= min
x∈Dγ ∗

f1(x)

g1(x)
+ γ ∗

2 + · · · + γ ∗
q

≤ f1(x∗)
g1(x∗)

+ γ ∗
2 + · · · + γ ∗

q

= M. (9)

On the other hand, given ε > 0, there is some γ ε = (γ ε2 , . . . , γ
ε
q ) ∈ Iq−1 such that

T (γ ε) ≤ M1 + ε. (10)

Since
fs(x)

gs(x)
,∀s = 2, . . . , q , are continuous and Dγ ε is compact, we can find xγ ε ∈ Dγ ε ⊂ D

that minimizes (Pγ ε ). Then,

T (γ ε) = f1(xγ ε )

g1(xγ ε )
+ γ ε2 + . . .+ γ εq

= f1(xγ ε )

g1(xγ ε )
+ f2(xγ ε )

g2
(
xγ ε

) + . . .+ fq(xγ ε )

gq(xγ ε )

≥ M. (11)

Combining (10) and (11) to obtain

M ≤ M1 + ε, ∀ε > 0.

Let ε → 0 and by (9), we prove that γ ∗ is a limit point of {γ ε}; x∗ is a limit point of {xγ ε };
and

M = M1.


�
In practice, optimization problems with inequality constraints are usually easier than those

with equality constraints. Therefore, we further replace Dγ with

�γ = {x ∈ D| fs(x)− γs gs(x) ≤ 0, s = 2, . . . , q},
and consider for β = (β2, β3, . . . , βq) ∈ Iq−1 the following problem:

(�β) min
x∈�β

f1(x)

g1(x)

s.t. �β = {x ∈ D| fs(x)− βs gs(x) ≤ 0,∀s = 2, . . . , q}. (12)

Let xβ be an optimal solution of (�β) and define

	(β) =
q∑

s=1

fs(xβ)

gs(xβ)
. (13)

Then, we consider

(P′′) inf
β∈Iq−1

	(β).
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Theorem 3.2 The optimal values of (P′) and (P′′) are the same.

Proof Let M1 and M2 be the optimal value of (P′) and (P′′), respectively. Since

Dβ ⊆ �β, ∀β ∈ Iq−1,

this implies

	(β) ≤ T (β).

Thus

M2 = inf
β∈Iq−1

	(β) ≤ inf
β∈Iq−1

T (β) = M1. (14)

Conversely, given ε > 0, there exists some βε ∈ Iq−1 such that

	(βε) ≤ M2 + ε. (15)

By the same arguments as in the proof of Theorem 3.1, we can find xβε ∈�βε ⊂ D such
that

	(βε) =
q∑

s=1

fs(xβε )

gs(xβε )
.

This implies

M ≤ 	(βε). (16)

By the Theorem 3.1, (16) and (15),

M1 = M ≤ 	(βε) ≤ M2 + ε. (17)

Letting ε tend to 0, we show that

M = M1 = M2.


�
Although we have proved (P) and (P′′) have the same optimal value, Iq−1 is only compact,

connected but may be not a box. However, it is not difficult to find a prescribed hyper-cube
that covers Iq−1. Let

Ls = min
x∈D

fs(x)

gs(x)
, ∀s = 2, . . . , q;

Us = max
x∈D

fs(x)

gs(x)
, ∀s = 2, . . . , q.

Then,

B = B2 × · · · × Bq ⊇ Iq−1

with Bs = [Ls,Us], s = 2, . . . , q. To modify (P′′) as an optimization problem over B rather
than just over Iq−1, we choose a large constant M�M and let	(β) = M for all β ∈ B\Iq−1

such that

�β = {x ∈ D| fs(x)− βs gs(x) ≤ 0, ∀s = 2, . . . , q} = Ø.
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Then define

ψ(β) =

⎧
⎪⎪⎨

⎪⎪⎩

	(β), if β ∈ Iq−1;
M, if �β = Ø;
q∑

s=1

fs(xβ)

gs(xβ)
, xβ solves (�β), if β ∈ B\Iq−1,�β 
= Ø.

(18)

Consider

(P′′′) inf
β∈B

ψ(β).

Theorem 3.3 (P′′′) and (P′′) have the same optimal value.

Proof Let M3 be the optimal value of (P′′′). By the definition of ψ(β), if �β = Ø, then

ψ(β) = M > M.

Moreover, if β ∈ B\Iq−1,�β 
= Ø, then xβ ∈ �β ⊂ D and

ψ(β) =
q∑

s=1

fs(xβ)

gs(xβ)
≥ M.

By Theorems (3.1) and (3.2), the minimum value of 	(β) over Iq−1 is M . Since ψ(β) =
	(β) for β ∈ Iq−1, we thus know that the minimum of ψ(β) over B must occur on Iq−1.

This proves

M = M3. 
�

4 The algorithm

We have seen that solving (P) amounts to solving (P′′′) in the image space

Iq−1 =
{(

f2(x)
g2(x)

, . . . ,
fq (x)
gq (x)

) ∣∣∣∣ x ∈ D

}
. The objective function ψ(β) of (P′′′), defined by

the minimization problem (�β) in (12), is nonconvex on B = B1 × · · · × Bs × · · · × Bq−1

where Bs = [Ls,Us], s = 1, . . . , q − 1 and

Ls = min
x∈D

fs(x)

gs(x)
; (19)

Us = max
x∈D

fs(x)

gs(x)
. (20)

To speed up the computation, we deal with only a sub-interval [lk
s , uk

s ] ⊂ [Ls,Us] at
iteration k. Let

Bk = [lk
2 , uk

2] × · · · × [lk
q , uk

q ]
and

(P′′′
k ) inf

β∈Bk
ψ(β), (21)

where lk
s , uk

s are the k-th parameters in the Dinkelbach algorithm for solving Ls and Us ,
respectively. The first step of the Dinkelbach algorithm requires a point x0 ∈ D with which
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one computes u0
s = l0

s = fs (x0)

gs (x0)
, for all s = 2, . . . , q . Therefore, B0 is just a singleton

(l0
2 , . . . , l

0
q). For other Bk, k = 1, 2, . . ., compute lk

s and uk
s separately by solving parametric

subproblems, for s = 2, . . . , q ,

min
x∈D

{ fs(x)− lk−1
s gs(x)} = fs(x

k
s )− lk−1

s gs(x
k
s ) (22)

and

max
x∈D

{ fs(x)− uk−1
s gs(x)} = fs(x̄

k
s )− uk−1

s gs(x̄
k
s ). (23)

Then, let

lk
s = fs(xk

s )

gs(xk
s )
,

and

uk
s = fs(x̄ k

s )

gs(x̄ k
s )
.

By this way, {lk
s } decrease monotonically to Ls and {uk

s } increase monotonically to Us such
that B0 ⊂ B1 · · · ⊂ Bk · · · and eventually (Pk

′′′) coincides with (P′′′) in the limit.
For each (P′′′

k ), we select m sample particles {β1
k , β

2
k , . . . , β

m
k } ⊂ Bk each of which is a

q − 1 dimensional vector. Evaluating ψ(β i
k) for each particle requires to check whether

�βi
k

= {x ∈ D| fs(x)− (β i
k)s gs(x) ≤ 0, ∀s = 2, . . . , q} (24)

is an empty set. If fs and gs are affine, this problem can be solved by the phase-one of linear
programming. Otherwise, we determine by the following sequence of optimization problems.
First, let

Cq = min
x∈D

fq(x)− (β i
k)q gq(x). (25)

We have the following lemma.

Lemma 4.1 The optimal value Cq ≤ 0.

Proof Clearly, (β i
k)q ∈ [Lq ,Uq ]. Given that D is compact and fq (x)

gq (x)
is continuous on D,

there exists x ′ ∈ D such that

Lq = min
x∈D

fq(x)

gq(x)
= fq(x ′)

gq(x ′)
≤ (β i

k)q .

Since gq(x) > 0 for all x ∈ D, we have

fq(x
′)− (β i

k)q gq(x
′) ≤ 0,

which shows that Cq ≤ 0. 
�
Let xq be the optimal solution of (25). By Cq ≤ 0, we can use xq as an initial point to

solve

Cq−1 = min
x∈D

fq−1(x)− (β i
k)q−1gq−1(x)

s.t. fq(x)− βq gq(x) ≤ 0. (26)
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and let xq−1 be the optimal solution of (26). If Cq−1 > 0, then�βi
k

= Ø. Otherwise, we use
xq−1 as an initial point to solve

Cq−2 = min
x∈D

fq−2(x)− (β i
k)q−2gq−2(x)

s.t. fq−1(x)− βq−1gq−1(x) ≤ 0; fq(x)− βq gq(x) ≤ 0. (27)

In general, we consider, for ν = 1, 2 . . . , q − 2,

Cq−ν = min
x∈D

fq−ν(x)− (β i
k)q−νgq−ν(x)

s.t. {x | fµ(x)− βµgµ(x) ≤ 0, µ = q − ν + 1, . . . , q}. (28)

and let xq−ν be the optimal solution of (28). If at any stage Cq−ν > 0,�βi
k

= Ø. Otherwise,
xq−ν will be the initial solution for solving Cq−ν−1.

Lemma 4.2 The set �βi
k

is non-empty if and only if every Cµ,µ = 2, 3, . . . , q − 1 is
non-positive.

By starting from any x ∈ D, we can use Matlab to solve for Cq ,Cq−1, . . . ,C2 sequen-
tially. The procedure is especially designed for Matlab because it requires to input an initial
feasible solution when solving a non-linear programming.

Theorem 2.1 implies that the algorithm must converge asymptotically, but does not show
how soon the convergence can be observed. To prevent from terminating the algorithm pre-
maturely, our stopping rule consists of three stages. Among the m particles in the image space
Iq−1, the one with the smallest ψ value is called the best particle. If it is kept unchanged for
K1 consecutive iterations, the algorithm enters the second stage which will randomly sample
a1 additional particles. After a few iterations, if the best one remains unchanged for K2 − K1

consecutive times, the algorithm shifts into the final stage with an additional a2 particles.
The algorithm comes to a complete stop when the best particle has not moved for K3 − K2

consecutive times. Applying this scheme, we can start with a smaller set of sample parti-
cles, and gradually increase the sample size. Moreover, the total number of iterations cannot
exceed a preset parameter Maxiter. The execution time is thus controlled by the parameters
K1, K2, K3 and Maxiter.

4.1 EM image space algorithm for solving (P)

Step 1. Select x0 ∈ D and calculate

u0
s = l0

s = fs(x0)

gs(x0)
, ∀s = 2, . . . , q.

Set k = 1, k1 = 0, l = 0. Choose four positive integers for Maxiter and
K1, K2, K3.

Step 2. Determine the search range Bk = [lk
2 , uk

2] × · · · × [lk
q , uk

q ] by solving

min
x∈D

{ fs(x)− lk−1
s gs(x)} = fs(x

k
s )− lk−1

s gs(x
k
s )

and

max
x∈D

{ fs(x)− uk−1
s gs(x)} = fs(x̄

k
s )− uk−1

s gs(x̄
k
s ).

123



J Glob Optim (2008) 42:91–109 101

Then compute

lk
s = fs(xk

s )

gs(xk
s )
, ∀s = 2, . . . , q,

and

uk
s = fs(x̄ k

s )

gs(x̄ k
s )
, ∀s = 2, . . . , q.

Step 3. Select randomly m sample points {β1
k , β

2
k , . . . , β

m
k } ⊂ Bk . For i = 1, . . . ,m,

Step 3.1. compute ψ(β i
k) by (18);

Step 3.2. find

βbest
k ∈ argmin{ψ(β i

k) : i = 1, . . . ,m},

β
p
k ∈ argmax{‖βbest

k − β i
k‖ : i = 1, . . . ,m};

Step 3.3. compute the charges Qi
k by

Qi
k = exp

(
−n

ψ(β i
k)− ψ(βbest

k )
∑n

i=1 ψ(β
i
k)− ψ

(
βbest

k

)
)

;

Step 3.4. calculate the electromagnetic force Fi
k , i 
= p by

F (i, j)
k = (β i

k − β
j

k )
Qi

k Q j
k

‖β i
k − β

j
k ‖2

,

Fi
k =

m∑

j 
=i

τ j F (i, j)
k ,

where τ j = 1 if ψ(β i
k) < ψ(β

j
k ), and τ j = −1 if ψ(β i

k) ≥ ψ(β
j

k ). For
i = p,

F p
k =

m∑

j 
=p

(−1)n j τ j F (i, j)
k ,

where n j
′s are Bernoulli random variables such that

n j =
{

0, with prob. 0 < µ < 1;
1, with prob. 1 − µ.

j = 1, . . . , p̂, . . . ,m.

Step 3.5. Move β i
k, i 
= best to

β i
k = β i

k + λi
k

Fi
k

‖Fi
k‖

where λi
k is a random step size to keep β i

k in Bk .

Step 4. If k < Maxiter and l + k1 < K3,
Step 4.1. set k = k + 1.
Step 4.2. if βbest

k = βbest
k−1 ,

set k1 = l + k1 + 1. Otherwise, set k1 = 0.

123



102 J Glob Optim (2008) 42:91–109

Step 4.3. if k1 = K1, set l = K1, k1 = 0 and set m = m + a1;
Step 4.4. if k1 = K2, set l = K2, k1 = 0 and set m = m + a2;
Step 4.5. go to Step 2.

5 Numerical examples

To test the numerical performance of the EM image space approach, we have complied a
set of test problems involving linear as well as nonlinear ratios. The implementation was
done in Matlab 7.2 on Intel Core Duo 1.66 GHz Notebook with 1.5G memory. The main
computation effort for minimizing the sum of q ratios with a set of m sample points is to
solving m single-ratio problems each with q − 1 constraints by the Dinkelbach method, a
Newton-type algorithm whose convergence is expected to be very fast. The Dinkelbach pro-
cedure is implemented by Matlab subroutine fmincon. To compare our results, we solve the
same set of test problems using the nonlinear optimization solver KNITRO with multistart
option, and as the modeling language, we use AMPL.

Example 5.1 In this example, we give a set of 16 fractional functions F1, . . . , F16 and con-
sider the sum of the first four, six, eight, . . . , sixteen of them. They are

F1 = x1 + 0.5x2 + x3 + 5

x1 + 2x2 + 3x3 + 5
; F2 = 2x1 − x3 − 5

4x1 + 2x2 + x3 + 5
;

F3 = x1 − 0.2x2 + 3x3 + 5

x1 + 5x2 + x3 + 1
; F4 = x1 − 2x2 − 4x3 + 1

x2 + 3x3 + 5
;

F5 = −x1 + x2 − x3

2x2 + 3x3 + 1
; F6 = x1 − 4x2 − 2x3 + 2

−x1 + 2x2 + x3 + 11
;

F7 = 2x1 + 2x2 − 5x3 + 1

3x1 + x2 + x3 + 1
; F8 = x1 + x2 + 2x3 + 1

x1 + 2x2 + x3 + 1
;

F9 = x1 − 3x2 + x3 + 2

x1 + x3 + 3
; F10 = x1 + 3x2 + x3 + 2

2x1 + x2 + x3 + 1
;

F11 = −x1 − 3x2 + x3

x1 + 3x2 + x3 + 1
; F12 = −x1 + 5x2 − x3

3x1 + x2 + x3 + 6
;

F13 = 3x1 − x2 + x3 − 1

x1 + 2x2 + 2
; F14 = −x2 + 2x3 + 1

2x1 + 4x2 + x3 + 3
;

F15 = −x1 − 2x2 + x3 + 3

3x1 + 3x2 + x3 + 2
; F16 = −3x1 − x2 + x3 − 2

x1 + 2x2 + 6x3 + 1
.

This example also has a constraint set D as follows:

D = {0 ≤ x ∈ R3 | 2x1 + x2 + x3 ≤ 10, x1 + 6x2 + 3x3 ≤ 10,

x1 + 3x2 + 2x3 ≤ 10, x1 + 2x2 + x3 ≤ 10}.
The purpose of Example 5.1 is to verify the validity of the EM image space approach. With

a small scale problem in three variables, we were allowed to confirm the results more easily.
The nature of the example, however, forces our method to work in a higher dimensional space
than D. As expected, the results in Table 2 show that the EM image space approach, though
correctly worked out most of the problems except for the last sum-of-16-ratios, is in general
slower than KNITRO.

The sum-of-16-ratios problem is quite tricky. It has two local minima, one at (1.3157,
1.4471, 0) with the value 2.3106 and the other at (5, 0, 0) with the optimal value 1.4867.
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Table 2 EM image space approach for Example 5.1 with parameters m = 10,µ = 0.45, (K1, K2, K3, K4) =
(5, 8, 15,∞), (a1, a2) = (5, 5),Maxiter = 30

q EM image space approach KNITRO (multistart)

Obj. value Run time (s) Obj. value Run time (s)

4 0.23617 30.29 0.23609 0

6 0.0275 27.64 0.02750 0

8 −0.6513 25.43 −0.65126 0

10 1.4083 16.54 1.40828 0

12 1.6128 25.37 1.61279 0

14 2.2427 17.375 2.24275 0

16 2.4813 29.4688 2.310583 0

∗16 1.6348 7091 (1.48671) (0.156)

The former is a non-global local minimum which has a very large basin of attraction, con-
stituting a region at least 95% of D. It can be visualized by noting both local minima have
the third component 0 so that we can project the graph of the function onto the domain
{(x1, x2, 0) | 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5/3}, which then gives Fig. 1. Applying directly the
local solver like Matlab or KNITRO failed to escape the large basin (the bottom right of
the graph). Incorporating KNITRO with multistart option, however, reached (5, 0, 0) after a
couple of trials. This solution is shown in the last row of Table 2.

For this problem, the EM image space approach had to work on a 15-dimensional space.
We let EM run for 100 iterations, increase the probability of reversing the search directions to
0.95, and used up to 600 sample particles at a time. In spite of the efforts, the solution (when
converted back to D) merely escaped the wrong basin but the solution quality, suffering
from a much higher dimensional approach, was not as good. See Table 2 row (∗16). We
also believe that the cause to the poor performance of the EM image space should be on the
dimension, not on the large basin because the EM domain space approach (applying EM
directly on D, see next section) worked out the global optimal solution in 4.29 s (last row in
Table 6).

Example 5.2 In this example, we consider the sum of two nonlinear ratios, F1 and F2:

F1 =
cos

(√
x2

1 + 3x2
2

)
+ x2

cos(x1)+ 3x2
2 + 2

; F2 = cos(x1)+ x2
2 + x2

x2
1 + x2 + 1

,

with the constraint D defined by

D = {(x1, x2) ∈ R2 | x1 + 2x2 ≤ 6, 2x1 − x2 ≤ 1, x1, x2 ≥ 0}.

The function cos

(√
x2

1 + 3x2
2

)
has a difficult spiral contour and the objective function

F1 + F2 has at least two local minima on D. Starting from (0.2, 0.1), Matlab found a non-
global local minimum at (0.5, 0) with a value 1.00703. Both the EM image space approach
and KNITRO with multistart option had managed to escape (0.5, 0) and arrived at the global
optimal solution (0.9361, 0.8722) (see Table 3).
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Fig. 1 The graph of the
sum-of-16-ratios on the domain
{(x1, x2, 0) | 0 ≤ x1 ≤ 5, 0 ≤
x2 ≤ 5/3} where a local
minimum is located at
(1.3157, 1.4471, 0) and the
global solution is at (5, 0, 0)

0
2

40 1

2

3

4

5

6

7

8

9

10

x
1

x
2

z

Table 3 EM image space approach for Example 5.2 with parameters m = 3, (K1, K2, K3)=
(2, 2, 5), (a1, a2) = (3, 5),Maxiter = 50, µ = 0.75

EM image sp. approach KNITRO (multistart) Matlab

Obj. value Run time Obj. value Run time Obj. value Run time

0.9467 25.84 0.9467 0.016 1.00703 0.063

Example 5.3 In this example, the EM image space approach was tested on some large scale

sum-of-linear-ratios problems. The test problems minimize
∑q

s=1
ct

s x + ps

dt
s x + qs

subject to D =
{x |Ax ≤ b, x ≥ 0} with cs, ds ∈ R

n; ps , qs ∈ R for s = 1, 2, . . . , q and A ∈ R
p × R

n; b ∈
R

p. In particular, vectors ds are non-negative and qs are positive so that the denominators
are strictly positive over the constraint. In this example, p is fixed at 5, n is up to 1000 and
the components in all vectors were randomly generated in Matlab format. They can be
retrieved from the website: http://www.math.ncku.edu.tw/english/rlsheu.html.

Due to the scale of the problems, we incorporated the EM image space approach with a
local search strategy as in [8]. It allows the current best point βbest to search for a better point
around a δ-neighborhood of βbest . The search is done along each coordinate direction for a
number of trials specified by L SI T E R (stands for “local search iterations”). The parameters
δ and L SI T E R are predefined parameters. A replacement is made for βbest once there is a
better solution found. This local search, introduced by Birbil and Fang [8], does not utilize
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Table 4 Comparison of EM image space approach and Matlab for large scale problems

(q, n) EM image space approach Matlab

Obj. value Run time (s) Obj. value Run time (s)

(2, 200) −10.9583 28.06 −10.9647 9.37

(4, 200) −9.1297 20.89 −3.0332 8.4

(6, 200) −4.4149 22.8 −2.5102 10.28

(8, 200) −4.1672 57.56 −3.6906 5.5

(2, 1000) −1.377 38.56 Not available over 2 hours

(4, 1000) 0.9788 102.68 Not available over 2 hours

(6, 1000) 1.2779 1147 1.27 1666

(8, 1000) 2.7051 629.2 2.7011 1639

Parameters used by EM image space approach in Example 5.3

(q, n) m (K1, K2, K3) (a1, a2) Maxiter ν δ L SI T E R

(2, 200) 4 (3, 3, 3) (3, 5) 50 0.56 0.25 5

(4, 200) 5 (2, 2, 0) (4, 0) 50 0.56 0.45 5

(6, 200) 5 (2, 2, 0) (4, 5) 50 0.56 0.45 5

(8, 200) 3 (2, 2, 3) (3, 3) 50 0.56 0.5 5

(2, 1000) 4 (2, 2, 0) (2, 1) 50 0.56 0.45 2

(4, 1000) 6 (2, 4, 0) (2, 2) 50 0.56 0.5 5

(6, 1000) 7 (2, 8, 12) (2, 2) 50 0.56 0.45 10

(8, 1000) 6 (2, 4, 4) (5, 5) 50 0.56 0.7 20

any first order information, hence is flexible and easy to implement. It improves the solution
quality but is time consuming. It is worthwhile especially in the final stage of large scale
problems.

We first solved each problem by the EM image space approach with the local search,
and then by Matlab subroutine fmincon. Since n�q , our EM image space approach works
fine. The results and their comparison are given in Table 4. These testing problems, rang-
ing from (q, n) = (2, 200) to (q, n) = (8, 1000), are by far the largest in the literature.
Moreover, many of them have multiple local minima. For (q, n) = (2, 200), the EM image
space appraoch and Matlab found the same local minimum but Matlab was quicker. For
(q, n) = (4, 200), (6, 200), (8, 200), Matlab was trapped by a local minimum while our
EM approach was able to escape. For (q, n) = (2, 1000) and (q, n) = (4, 1000), Matlab
failed to find a local minimum over 2 h. For (q, n) = (6, 1000) and (q, n) = (8, 1000), both
methods approached the same solution. Matlab had a slightly better solution quality but
spent longer time.

The free version of AMPL allows the user to run mathematical programs for up to 300
variables. We thus apply KNITRO with multistart option whenever n = 200. It solved the
same problem for 200 times (default value) using 200 randomly generated start points. See
Table 5 for the results.

Unlike Examples 5.1–5.2 where the problem dimensions were low, even with the multi-
start option KNITRO failed to escape the non-global local minima in this example. One way
to understand the phenomenon is to consider an optimization problem whose feasible domain

123



106 J Glob Optim (2008) 42:91–109

Table 5 Comparison of EM image space approach and KNITRO with multistart for n = 200

(q, n) EM image space approach KNITRO (multistart)

Obj. value Run time (s) Obj. value Run time (s)

(2, 200) −10.9583 28.06 −10.96434 (−10.96458) 0.281 (47.734)

(4, 200) −9.1297 20.89 −3.03288 (−3.03318) 0.234 (43.281)

(6, 200) −4.4149 22.80 −2.51021 (−2.51172) 0.203 (38.969)

(8, 200) −4.1672 57.56 −3.69056 (−3.69062) 0.234 (42.531)

is an n-dimensional cube each side of which is 1, and suppose the basin of the attraction for
the global optimum is an n-dimensional sub-cube with each side 0.9. Then, a randomly gen-
erated point has a probability of (0.9)n to fall inside the basin. When n = 200, the probability
is 7.06 × 10−10 with which KNITRO with multistart option is almost impossible to generate
a point inside the basin in 200 trials.

6 EM domain space approach

In this section, we use some numerical examples to compare the EM image space approach
with the EM domain space approach. To apply EM on D, we first extend the feasible domain
D into a hyper-cube B = [l1, u1]×· · ·×[ln, un] where li = minx∈D xi and ui = maxx∈D xi .
Define

f̄ (x) =
{∑q

s=1
fs (x)
gs (x)

, if x ∈ D;
M (a large constant), if x ∈ B − D.

Then we can apply EM to solve min
x∈B

f (x). This approach is more straight forward and incurs

no extra overhead computation like the image space approach. When n is small, it should
enjoy certain edge. However, as the following examples suggest, the high nonlinearity of
f̄ (x) may offset the advantage in dimensions.

Example 6.1 We use EM to solve Example 5.1 directly on D. The results are summarized in
Table 6. Since we observed that the EM domain space approach usually produced solutions
of poor quality, the following comparison was thus made by forcing EM on the domain to
run extensively (Maxiter = 100000) until the runtime has exceeded that used by the image
space in Example 5.1. As we can see, for q = 4 to q = 14, EM in the domain space obtained
a less precise solution within the same time frame. Very surprisingly, the EM domain space
approach solved correctly the 16-ratio problem in 4.29 s.

Example 6.2 We used EM to solve Example 5.3 directly on D. From Table 7, it is evident
when n�q the EM image space approach has a huge advantage in dimensionality and thus
has performed much better.

Finally, we propose another reason why it is worthwhile to work in the image space. The
replacement of fs/gs with γs suppresses the nonlinearity of the former into the latter single
linear variable. As a result, the objective function ψ(β) in the image space has a much more
regular shape than the original sum-of-ratios function.
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Table 6 EM domain space approach for Example 5.1 with parameters m = 10, (K1, K2, K3, K4)
= (5, 8, 15,∞), (a1, a2) = (3, 5), µ = 0.45

q EM image space approach EM domain space approach

Obj. value Run time (s) Obj. value Run time (s)

4 0.2361 30.29 0.2381 30.29

6 0.0275 27.64 0.0308 27.64

8 −0.6513 25.43 −0.6496 25.43

10 1.4083 16.54 1.4141 16.54

12 1.6128 25.37 1.6166 25.37

14 2.2427 17.375 2.2486 29.48

16 1.6348 7091 1.4867 4.29

Table 7 EM domain space approach for Example 5.3 with parameters m = 50, µ= 0.56, (K1, K2, K3, K4) =
(2, 2, 0,∞), (a1, a2) = (4, 5) and Maxiter = 5000

(q, n) EM image space approach EM domain space approach

Obj. value Run time (s) Obj. value Run time (s)

(2, 200) −10.9583 28.06 1.0221 558.57

(4, 200) −9.1297 20.89 0.5434 554.84

(6, 200) −4.4149 22.80 0.5915 563.78

(8, 200) −4.1672 57.56 −0.2362 567.25

Example 6.3 (Benson [6]) This problem has two nonlinear ratios with three variables. The
ε-optimal value reported in [6] is −6.12. Table 8 below shows that both the EM image space
approach and the EM domain space apprach solved the problem, but again the later was less
precise and slower. Figure 2 shows that the objective function ψ(β) is a one-dimensional
quasi-convex function. It is unimodular and is easier to solve than the original sum-of-non-
linear-ratios problem.

F1 = x2
1 − 4x1 + 2x2

2 − 8x2 + 3x2
3 − 12x3 − 56

x2
1 − 2x1 + x2

2 − 2x2 + x3 + 20
;

F2 = 2x2
1 − 16x1 + x2

2 − 8x2 − 2

2x1 + 4x2 + 6x3

D = {(x1, x2, x3) | x1 + x2 + x3 ≤ 10,−x1 − x2 + x3 ≤ 4, x1, x2, x3 ≥ 1}

7 Conclusion

In this paper, we reduce the sum-of-ratios problems into a sequence of single ratio problems
and propose a random search algorithm to incorporate the Dinkelbach algorithm for solving
the transformed problem (P′′′). Since most of our examples have multiple local minima, local
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Table 8 Applying EM to both image and domain space using parameters m = 3, µ = 0.48, (K1, K2, K3) =
(2, 3, 5), (a1, a2) = (3, 5), Maxiter = 10000

EM image sp. approach EM domain sp. approach

Obj. value Runtime Obj. value Runtime

−6.1198 28.3906 −6.1196 28.4063

Fig. 2 The graph of ψ(β) is quasi-convex in Example 6.3

search algorithms, such as fmincon in Matlab , may easily miss the global minimizer. On the
other hand, although KNITRO along with multistart has done very well in low dimensional
examples (Examples 5.1–5.2), it was insufficient for large scale problems in Example 5.3. In
contrast, our EM image space approach replaces the nonlinear function fs/gs with a linear
independent variable γs . When n�q , it minimizes a better behaved function ψ(β) in the
much smaller image space.

Evaluating ψ(β), however, create computational difficulty. Since ψ(β) is defined implic-
itly by a constrained minimization problem, deterministic type of algorithms using the first
order information of the function, such as fmincon in Matlab or KNITRO are, in general,
insufficient for solving the considered optimization problem (P′′′). This is why we picked a
random search algorithm like EM to work out ψ(β). The paper confirms the feasibility of
combining the transformation (P′′′), the Dinkelbach algorithm, and the EM random proce-
dure, in spite that it is still time consuming and yet not precise enough. We hope that these
drawbacks can be resolved by an improved version (especially with an efficient local search
strategy) of EM.
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